Envelope Theorems and Dilation with Convex Conditional Previsions
نویسندگان
چکیده
This paper focuses on establishing envelope theorems for convex conditional lower previsions, a recently investigated class of imprecise previsions larger than coherent imprecise conditional previsions. It is in particular discussed how the various theorems can be employed in assessing convex previsions. We also consider the problem of dilation for these kinds of imprecise previsions, and point out the role of convex previsions in measuring conditional risks.
منابع مشابه
Financial risk measurement with imprecise probabilities
Although financial risk measurement is a largely investigated research area, its relationship with imprecise probabilities has been mostly overlooked. However, risk measures can be viewed as instances of upper (or lower) previsions, thus letting us apply the theory of imprecise previsions to them. After a presentation of some well known risk measures, including Value-at-Risk or VaR, coherent an...
متن کاملSome Bounds for Conditional Lower Previsions
In this paper we consider some bounds for lower previsions that are either coherent or centered convex. As for coherent conditional previsions, we adopt a structure-free version of Williams’ coherence, which we compare with Williams’ original version and with other coherence concepts. We then focus on bounds concerning the classical product and Bayes’ rules. After discussing some implications o...
متن کاملUncertainty modelling and conditioning with convex imprecise previsions
Two classes of imprecise previsions, which we termed convex and centered convex previsions, are studied in this paper in a framework close to Walley’s and Williams’ theory of imprecise previsions. We show that convex previsions are related with a concept of convex natural estension, which is useful in correcting a large class of inconsistent imprecise probability assessments, characterised by a...
متن کاملConvex Imprecise Previsions: Basic Issues and Applications
In this paper we study two classes of imprecise previsions, which we termed convex and centered convex previsions, in the framework of Walley’s theory of imprecise previsions. We show that convex previsions are related with a concept of convex natural estension, which is useful in correcting a large class of inconsistent imprecise probability assessments. This class is characterised by a condit...
متن کاملConvex Imprecise Previsions for Risk Measurement
In this paper we introduce convex imprecise previsions as a special class of imprecise previsions, showing that they retain or generalise most of the relevant properties of coherent imprecise previsions but are not necessarily positively homogeneous. The broader class of weakly convex imprecise previsions is also studied and its fundamental properties are demonstrated. The notions of weak conve...
متن کامل